1.18 POINTS TO PONDER

1. You might wonder why the protons, all carrying positive charges, are compactly residing inside the nucleus. Why do they not fly away? You will learn that there is a third kind of a fundamental force, called the strong force which holds them together. The range of distance where this force is effective is, however, very small ~10^−14 m. This is precisely the size of the nucleus. Also the electrons are not allowed to sit on top of the protons, i.e. inside the nucleus, due to the laws of quantum mechanics. This gives the atoms their structure as they exist in nature.

2. Coulomb force and gravitational force follow the same inverse-square law. But gravitational force has only one sign (always attractive), while Coulomb force can be of both signs (attractive and repulsive), allowing possibility of cancellation of electric forces. This is how gravity, despite being a much weaker force, can be a dominating and more pervasive force in nature.

3. The constant of proportionality k in Coulomb’s law is a matter of choice if the unit of charge is to be defined using Coulomb’s law. In SI units, however, what is defined is the unit of current (A) via its magnetic effect (Ampere’s law) and the unit of charge (coulomb) is simply defined by (1C = 1 A s). In this case, the value of k is no longer arbitrary; it is approximately 9 × 10^9 N m^2 C^−2.

4. The rather large value of k, i.e., the large size of the unit of charge (1C) from the point of view of electric effects arises because (as mentioned in point 3 already) the unit of charge is defined in terms of magnetic forces (forces on current-carrying wires) which are generally much weaker than the electric forces. Thus while 1 ampere is a unit of reasonable size for magnetic effects, 1 C = 1 A s, is too big a unit for electric effects.

5. The additive property of charge is not an ‘obvious’ property. It is related to the fact that electric charge has no direction associated with it; charge is a scalar.

6. Charge is not only a scalar (or invariant) under rotation; it is also invariant for frames of reference in relative motion. This is not always true for every scalar. For example, kinetic energy is a scalar under rotation, but is not invariant for frames of reference in relative motion.

7. Conservation of total charge of an isolated system is a property independent of the scalar nature of charge noted in point 6. Conservation refers to inVariance in time in a given frame of reference. A quantity may be scalar but not conserved (like kinetic energy in an inelastic collision). On the other hand, one can have conserved vector quantity (e.g., angular momentum of an isolated system).

8. Quantisation of electric charge is a basic (unexplained) law of nature; interestingly, there is no analogous law on quantisation of mass.

9. Superposition principle should not be regarded as ‘obvious’, or equated with the law of addition of vectors. It says two things: force on one charge due to another charge is unaffected by the presence of other charges, and there are no additional three-body, four-body, etc., forces which arise only when there are more than two charges.

10. The electric field due to a discrete charge configuration is not defined at the locations of the discrete charges. For continuous volume charge distribution, it is defined at any point in the distribution. For a surface charge distribution, electric field is discontinuous across the surface.

11. The electric field due to a charge configuration with total charge zero is not zero; but for distances large compared to the size of the configuration, its field falls off faster than 1/r^2, typical of field due to a single charge. An electric dipole is the simplest example of this fact.